LBL Updates

November, 2021

LBL Updates

- Continued work on multi-GPU U-Solve
 - works with NVSHMEM on Summit (can run on Traverse, refers to example_scripts/run_cmake_build_summit_nvshmem_gpu.sh for compiling)
 - available from the nvshmem_multiGPUsolve branch
- Perlmutter(NVIDIA) and Spock(AMD)
 - NVSHMEM deadlock issue on Perlmutter traced to CUDA runtime behavior
 - ROCSHMEM still has runtime issue on Spock
- Continued updates to 3D Solve / interface

Note, Nan will be on parental leave thru January

New U-Solve data structure on GPU

- Background: SuperLU is designed for sparse LU with non-symmetric nonzero patterns in L and U factors. We use supernode partition for the L-factor, to get supernode size (dense submatrix) as large as possible. In general, the U-factor does not have the same nonzero pattern as the L-factor, so the U data structure uses a skylined representation that is compatible with the L supernodes partition.
 - The big advantage is that we do not store any extra zeros
 - The big disadvantage is that it is not friendly for fine-grained parallelism ⇒ U-solve performance is poor on GPU
- New design to mitigate L- and U-solve performance discrepancies:
 - on GPU, use the same supernode data structure for both L and U, which requires padding zeros in the U data structure ⇒ trade off memory for speed
 - On CPU, use the existing data structures.
- Code status: factorization is mostly working
- Next step: implement the new U-solve on ĞPU with this structure

SuperLU_DIST algorithms flowchart

Nonsymmetric pattern

Solve the transformed system: $(P_c P_r D_r A D_c P_c^T)(P_c D_c^{-1} X) = P_c P_r D_r B$

Q&A